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1.Introduction

Many signal processing areas are concerned with sparse solution recovery:
compressed sensing, variable selection, source separation, learning...

I Linear observation : Ax = d

I d : observed data, vector in RM
I x unknown data to be estimated in RN
I A observation matrix, M ×N matrix.

usually M < N , the system is undertermined, A is ill-conditioned,
observations are noisy

I Least square solution x̂ = arg min
x∈RN

‖Ax− d‖22

I Regularization: sparse signal hypothesis modeled by considering "`0-norm”
constraints:

‖x‖0 ≤ K where ‖x‖0 = # {xi, i = 1, . . . , N : xi 6= 0}

NB: `0-norm is NOT a norm as ‖λx‖0 = ‖x‖0 6= λ‖x‖0.
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1.0 Dictionary representation in image processing
I Image are non-stationary, they exhibit smooth areas, oscillations, edges,

textures,...
I Each part is represented by given waveforms which best match the image

structure, for example Basis Bi as Haar, smooth wavelets, sine/cosine,...
I Construct a redundant dictionary with all these representative waveforms,

possibly by a succession of bases
I An image d will be represented in this over-complete dictionary, if we find

arg min
x∈RN

‖Ax− d‖22 + λ‖x‖0

or
arg min

x∈RN
‖Ax− d‖22 subject to ‖x‖0 ≤ K
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1.1 Examples in Signal/image Processing

I signal is a sum of pulses, spikes, modeled by a sum of Dirac
∑K
r=1 xrδtr .

I acquisition system, channel, is modeled as a linear system, e.g. convolution
by a Gaussian function: d(.) = h ∗

∑K
r=1 xrδtr =

∑K
r=1 xrh(.− tr).

By assuming the Dirac locations tr are on a regular grid indexed by i = 1, ...N

I 1D example: Channel estimation in communications -
I 2D example: Single Molecule Localization in super-resolution microscopy -
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2D example in Super-resolution microscopy: SMLM
(Single Molecule Localization Microscopy)

Fluorescence microscopy

I Genes of fluorescent molecules are combined with genes
of proteins of structure we want to study
Nobel Prize of chemistry 2008

I Illumination by a laser causes the fluorophores to emit
photons

I structure of interest can be imaged through the
microscope

It allows

I living cell imaging
I 3D imagery
I Resolution 200 nm in lateral direction, around 400 axial direction (depth)

Approximate sizes : cell 10 -100 µm, nucleus 4 -7 µm, proteins 10 -100 µm,
molecules few nm.
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2D example in Super-resolution microscopy: SMLM (continued)

Conventional fluorescence microscopy limits

I physical diffraction limit of optical systems
I Airy patch = impulse response of the microscope (PSF:

Point Spread Function)
I overlapping patches limit at ≈200nm the distance

between two molecules to be resolved (Rayleigh limit)

Super-resolution by single molecule localization

I Photo-activable molecules: PALM Photo Activated Localisation
Microscopy ([Betzig & al 06, Hess & al, 2006]) et STORM STochastic Optical
Reconstruction Microscopy ([Rust & al, 2006])

I Sequentially activate and image a small random set of fluorescent molecules.
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2D example in Super-resolution microscopy: SMLM (continued)
I activation
I imaging
I localization
I assembling

Figure: PALM microscopy principle. From Zeiss tutorials
[http://zeiss-campus.magnet.fsu.edu/tutorials/index.html]
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2D example in Super-resolution microscopy: SMLM (continued)

Limitations: number of acquisition needed to obtain the super-resolved
image

I cost time and memory
I temporal resolution restricted (motion)

→ Increase molecule density
I Localization more difficult due to more overlapping

Localization algorithms

I Challenge ISBI 2013 [Sage et al 15]

I PSF fitting, and derived methods for high density molecule
localization (e.g. DAOSTORM, [Holden & al 11]).

I Deconvolution and reconstruction on a finer grid (e.g. FALCON,
[Min & al, 2014])
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2D example in Super-resolution microscopy: SMLM (continued)

Image formation model PALM / STORM

d ∈ RM×M one acquisition.
X ∈ RML×ML an image where each pixel of d is
divided in L×L pixels.

L=4

X

∗
H(·)

PSF H(X)

ML(·)

ML(H(X))

+η

d
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2D example in Super-resolution microscopy: SMLM (continued)

Image formation model PALM / STORM
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Problem `2 − `0

X̂ ∈ arg min
X

1

2
‖d−ML(H(X))‖22 + λ‖X‖0
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1.3 `2-`0 optimization problems

Exact Recovery problem

x̂ = arg min
x∈RN

‖x‖0 subject to Ax = d

Approximation problem: two constrained forms

x̂ = arg min
x∈RN

‖Ax− d‖22 subject to ‖x‖0 ≤ K

x̂ = arg min
x∈RN

‖x‖0 subject to ‖Ax− d‖22 ≤ ε

Approximation problem : penalized form

x̂ = arg min
x∈RN

G`0 (x) :=
1

2
‖Ax− d‖22 + λ‖x‖0

A ∈ RM×N with M � N

I Non equivalent formulations
I Existence of an optimal solution and relationships between optimal solutions

in [Nikolova 16]
I Intensive work in signal and image processing, and in statistics.
I non-continuous, non-convex and NP-hard optimization problem.

[Natarajan 95] [Davis & al 97]. Rouhgly speaking, a solution cannot be verified
in polynomial time w.r.t the dimension of the problem
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2. IHT Algorithm

Penalized form

x̂ = arg min
x∈RN

1

2
‖Ax− d‖22 + λ‖x‖0

I 1
2
‖Ax− d‖22 is L-gradient Lipschitz (L = ‖A‖2)

I Proximal of ‖.‖0 has explicit expression, this is the Hard Threshold

Iterative Hard Thresholding

(IHT): Forward-Backward Splitting (FBS) algorithm

xk+1 = proxγλ‖.‖0

(
xk − γAt

(
Axk − d

))
γ < 1

L
is the gradient step.

Computation of proxγλ‖.‖0 :

proxγλ‖.‖0 (y) = arg min
x∈RN

{
1

2
‖x− y‖2 + γλ‖x|‖0

}
1

2
(x− y)2 + γλ‖x|‖0 =

N∑
i=1

(xi − yi)2 + γλ|xi|0

where |u|0 = 1 if u 6= 0, 0 elsewhere.
Then it is sufficient to compute in 1D arg min

u∈R

{
g(u) := 1

2
(u− y)2 + γλ|u|0

}
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2.2 IHT Algorithm (continued)

Computation of arg min
u∈R

{
g(u) := 1

2
(u− y)2 + γλ|u|0

}

I if u = 0 then
g(0) = 1

2
(y)2

I The minimum could be reached at
û = 0, the value is g(û) = 1

2
(y)2

I if u 6= 0 then g(u) = 1
2

(u− y)2 +λ

I The minimum is reached at û = y
and the value is g(û) = λ

if |y| ≤
√

2λ then û = 0 if |y| ≥
√

2λ then û = y
The solution is given by the Hard Threshold function

û =

{
y if |y| >

√
2λ ,

0 if |y| ≤
√

2λ .
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2. IHT Algorithm (continued)

Find the solution of the optimal problem

x̂ = arg min
x∈RN

1

2
‖Ax− d‖22 + λ‖x‖0

by Forward Backward Splitting algorithm (Iterative Hard Thresholding)

xk+1 = proxγλ‖.‖0

(
xk − γAt

(
Axk − d

))
I IHT algorithm converges to a critical point

[Blumensath and Davies 08, Attouch et al 13].
I Initialization point is important, for example initialize with the solution

with the `1-norm problem: arg min
x∈RN

{
1
2
‖Ax− y‖2 + γλ‖x|‖1

}
. It is not

guaranty that this solution is sparse.
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3. Greedy algorithms
Greedy algorithms, Matching Pursuit (MP) [Mallat et al 93], Orthogonal MP
[Pati et al 93], Orthogonal Least Squares (OLS) [Chen et al 89], Bayesian OMP
[Herzet et al 10], Single Best Replacement [Soussen et al 11] and further variants.

Matching Pursuit:
d is the signal we want to represent with the a limited number K << N of
waveforms or atoms of dictionary A, one atom is one column of A, i.e. A.,i = ai,
i = 1, ..N .

For that we have to solve

x̂ = arg min
x∈RN

‖Ax− d‖22 subject to ‖x‖0 ≤ K.

( or x̂ = arg min
x∈RN

‖x‖0 subject to ‖Ax− d‖22 ≤ ε)

Matching Pursuit algorithm add one component at a time.
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3. Greedy algorithms (continued)

Matching Pursuit principle
It is assumed without loss of generality that A has unit norm columns,
‖A.,i‖ = ‖ai‖ = 1.

The first component i1 ∈ {1, ..., N} will be such that the correlation between
d and atom i is maximum: i1 = arg max

j∈{1,..,N}
|〈aj , d〉|.

Then the optimal solution is x1 = (0, 0, .., 〈ai1 , d〉, 0, .., 0), where the non null
component is at index i1, which is written as x1 = 〈ai1 , d〉.ei1 ,
ei ∈ RN , i ∈ {1, .., N} is the canonical basis in RN .

The criterion is ‖A.x1 − d‖2 = ‖d‖2 − (〈ai1 , d〉)2.

The residual is r = d−A.x1 = d− 〈ai1 , d〉ai1 , and the process is repeated.
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3. Greedy algorithms (continued)

Matching Pursuit Algorithm
Input: A (with unit norm column), d, K.

Initialize: r0 = d, σ0 = ∅, (x0 = 0).

Repeat, while #σk ≤ K: (or while ‖rk‖ > ε)

ik = arg max
j∈{1,..,N}

|〈rk, aj〉|

σk+1 = σk ∪ {ik}
rk+1 = rk − 〈rk, aik 〉.aik

(1)

σk is the support of the current solution xk, that is the indexes of the non-zero
components. #σk is the cardinal of σk. The initial value of #σ0 is 0 and it
increases by 1 at each iteration.
The optimal solution at current iteration is xk+1 = xk + 〈rk, aik 〉.eik .

I The residual ‖rk‖ converges exponentially to 0 [Mallat et al 93].
I Sub-optimal solution: retro-project the residual onto Span{(ai)i∈σK } reduce

the approximation error (‖A.xK − d‖2).
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3. Greedy algorithms (continued)
Orthogonal Matching Pursuit [Pati et al 93, Tropp 04]: at each iteration, optimally
estimate the intensities with the current support of the solution fixed, by
xk+1 = arg min

{x/σx⊂σk+1}
‖Ax− d‖2.

Orthogonal Matching Pursuit (OMP) Algorithm Input: A (with unit

norm column), d, K.

Initialize: r0 = d, σ0 = ∅

Repeat, while #σk ≤ K:

ik = arg max
j /∈σk

|〈rk, aj〉|

σk+1 = σk ∪ {ik}
xk+1 = arg min

{x/σx⊂σk+1}
‖Ax− d‖2

rk+1 = d−Axk+1

I Convergence in N iterations at most (at each iteration a new component is
selected),

I Exact sparse recovery results (under conditions on A) [Tropp 04].

20 / 47



3. Greedy algorithms (continued)

Further algorithms:
At each iteration, several strategies for one component to be

I added,
I removed,
I replaced.

Orthogonal Least Squares (OLS) [Chen et al 89], Bayesian OMP [Herzet et al 10],
Single Best Replacement [Soussen et al 11] and further variants
[Jain & al 11, Soussen et al 15]...

The more complex is the strategy, the best is the solution and the longest is the
computing time.
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4. `2-`0 optimization by continuous relaxation

Continuous separable relaxation (convex and non-convex)
1
2
‖Ax− d‖22 + λ‖x‖0 → 1

2
‖Ax− d‖22 + λ

∑
i∈IN φ(xi)

Continuous approximation of the `0-norm function:
I `1-norm: Lasso [Tibshirani 96] ; Basic Pursuit [Chen et al 98] ; Compressed

Sensing [Donoho et al 06, Candès et al 06])
I Adaptive Lasso [Zou 06] ;
I Nonnegative Garrote [Breiman 95] ;
I Exponential approximation [Mangasarian 96] ;
I Log-Sum Penalty [Candès et al 08] ;
I Smoothly Clipped Absolute Deviation (SCAD) [Fan and Li 01] ;
I Minimax Concave Penalty (MCP) [Zhang 10] ;
I `p-norms 0 < p < 1 [Chartrand 07, Foucart and Lai 09] ;
I Smoothed `0-norm Penalty (SL0) [Mohimani et al 09] ;

Are they good approximations?
Which one to use?
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4.0 `1 convex relaxation: a specific case
Replacing `0-norm with `1-norm gives convex problems. Non differentiability in 0
of the `1 norm enforces sparsity.

Basis Pursuit (BP) [Chen et al 98]

arg min
x∈RN

‖x‖1 subject to Ax = d

I Compresssed Sensing reconstruction problems [Donoho et al 06, Candès et al 06]
I Results of exact recovery of a sparse solution using `1 minimization rather

than `0 minimization have been shown, under quite restrictive conditions on
matrix A (Restrictive Isometry Property RIP, incoherence...)
[Donoho Elad 03, Gribonval Nielsen 03, Candès Wakin 08]

Basis Pursuit De-Noising (BPDN) [Chen et al 98], LASSO [Tibshirani 96]

Noisy version
arg min

x∈RN
‖x‖1 subject to ‖Ax− d‖22 ≤ ε

or
arg min

x∈RN

1

2
‖Ax− d‖22 + λ‖x‖1

I Sparse signal recovery under conditions on A [Candès et al 06, Candès Wakin 08].

LASSO = Least Absolute Shrinkage and Selection Operator
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2. `2-`0 optimization by continuous relaxation

G`0 (x) := 1
2
‖Ax− d‖22 + λ‖x‖0 → G̃(x) := 1

2
‖Ax− d‖22 +

∑N
i=1 φ(xi)

Definition of a good continuous approximation

I G`0 (x) and G̃(x) have same global minimizers

arg min
x∈RN

G̃(x) = arg min
x∈RN

G`0 (x) (P1)

I G̃(x) has less local minimizers than G`0 (x)

x̂ minimiseur de G̃ =⇒ x̂ minimiseur de G`0 (P2)

Question:

Can we derive necessary and suffisant conditions on φ(.) such that G̃(x) is a good
approximation of G`0 , with no conditions on A and ∀d ∈ RM ?
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4. `2-`0 optimization by continuous relaxation

Notations

I G`0 (x) := 1
2
‖Ax− d‖22 + λ‖x‖0

I G̃(x) := 1
2
‖Ax− d‖22 +

∑N
i=1 φ(xi)

I (P1) arg min
x∈RN

G̃(x) = arg min
x∈RN

G`0 (x)

I (P2) x̂ minimizer of G̃ =⇒ x̂ minimizer of G`0

I B : a finite subset of points of R on which φ is not differentiable.
I ‖ai‖ column i of matrix A (‖ai‖ 6= 0).

Additional assumptions

I min
x∈R

G`0 (x) = min
x∈R

G̃(x),

I φ is locally Lipschitz on R,
I φ is twice differentiable on R \B,
I φ is not differentiable on B.

26 / 47



4. `2-`0 optimization by continuous relaxation

Theorem (NS conditions for (P1))

G̃ has property (P1) ∀d ∈ R iff φ verifies:
I φ(0) = 0,

I ∀x ∈ R \
(
−
√

2λ
‖ai‖

,
√

2λ
‖ai‖

)
,

φ(x) = λ|x|0 = λ,

I ∀x ∈
(
−
√

2λ
‖ai‖

,
√

2λ
‖ai‖

)
\ {0},

φ(x) > φCEL0(‖ai‖, λ;x)
x

φ(x)

1{x∈D} = 1 if x ∈ D ; 0 otherwise.
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G̃ has property (P1) ∀d ∈ R iff φ verifies:
I φ(0) = 0,

I ∀x ∈ R \
(
−
√

2λ
‖ai‖

,
√

2λ
‖ai‖

)
,

φ(x) = λ|x|0 = λ,

I ∀x ∈
(
−
√

2λ
‖ai‖

,
√

2λ
‖ai‖

)
\ {0},

φ(x) > φCEL0(‖ai‖, λ;x)
x

φ(x)

−
√

2λ
‖ai‖

√
2λ
‖ai‖

φCEL0

φCEL0(‖ai‖, λ, x) = λ−
‖ai‖2

2

(
|x| −

√
2λ

‖ai‖

)2

1{
|x|≤

√
2λ
‖ai‖

}
1{x∈D} = 1 if x ∈ D ; 0 otherwise.
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4. `2-`0 optimization by continuous relaxation

Theorem (NS conditions for
(P1)-(P2))

g̃ has property (P1) and (P2) ∀d ∈ R iff
in addition to the previous conditions, φ
verifies:

I ∀x ∈ B \ {0}, lim
v→x
v<x

φ′(v) > lim
v→x
v>x

φ′(v)

I ∀x ∈ (β−, β+) \B, φ′′(x) ≤ −‖ai‖2

∃v ∈ V(x), φ′′(v) < −‖ai‖2

for β− ∈
[
−
√

2λ
‖ai‖

, 0
)
and β+ ∈

(
0,
√

2λ
‖ai‖

]
.

x

φ(x)

−
√

2λ
‖ai‖

√
2λ
‖ai‖

φCEL0

φCEL0(‖ai‖, λ, x) = λ−
‖ai‖2

2

(
|x| −

√
2λ

‖ai‖

)2

1{
|x|≤

√
2λ
‖ai‖

}
1{x∈D} = 1 if x ∈ D ; 0 otherwise.
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(
|x| −

√
2λ
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)2

1{
|x|≤

√
2λ
‖ai‖

}
1{x∈D} = 1 if x ∈ D ; 0 otherwise.

Proof is based on characterization of minimizers of G`0 [Nikolova 13] and critical
points of G̃.
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4. `2-`0 optimization by continuous relaxation

With conditions (P1) and (P2), φ depends on ‖ai‖ and λ when applied on xi:

G̃(x) :=
1

2
‖Ax− d‖22 +

∑
i∈IN

φ(‖ai‖, λ, xi)

x

φ(x)

−
√

2λ
‖ai‖

√
2λ
‖ai‖

φCEL0

β− β+
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4. `2-`0 optimization by continuous relaxation
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(a) Capped-`1 [Zhang 09]
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(b) SCAD [Fan and Li 01]
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(c) MCP [Zhang 10]
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Figure: Examples of penalties for which (P1) (Top) or (P1) and (P2) (Bottom)
hold for a = 0.5, λ = 1 and d = 1.8.

The function φCEL0 is a Minimax Concave Penalty (MCP) [Zhang 10].
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4. `2-`0 optimization by continuous relaxation

Examples using state of the art penalties

Penalty Def φ(u) P1 P2 Conditions

Cap-`1
[Zhang 09]

λmin {θ|u|, 1}
√

X λθ ≥
√

2λ‖ai‖

SCAD
[Fan and Li 01]


λ̃|u| if |u| ≤ λ̃,
2γλ̃|u|−λ̃2−u2

2(γ−1)
if λ̃ < |u| ≤ γλ̃,

(γ+1)λ̃2

2
if |u| > γλ̃

√
X

(γ+1)λ̃2

2
= λ

2 < γ ≤ 1
‖ai‖

− 1

MCP
[Zhang 10]


λ if |u| >

√
2λγi(√

2λ
γi
|u| − u2

2γi

)
if |u| ≤

√
2λγi

√ √
γi <

1
‖ai‖2

Trunc-`p λmin
{
θi|u|

pi , 1
} √ √

θi ≥
(
‖ai‖

2

pi(1−pi)λ

)pi/2

G̃(x) :=
1

2
‖Ax− d‖22 +

∑
i∈IN

φ(‖ai‖, λ, xi)

φCEL0(‖ai‖, λ, xi) = φMCP(γi, λ, xi) for γi =
1

‖ai‖2
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4. `2-`0 optimization by continuous relaxation

The `2 − `0 and `2− CEL0 functionals :

G`0 (x) :=
1

2
‖Ax− d‖2 + λ‖x‖0

GCEL0(x) =
1

2
‖Ax− d‖2 +

∑
i∈IN

φCEL0(‖ai‖, λ, xi)

where φCEL0(‖ai‖, λ, x) = λ−
‖ai‖2

2

(
|x| −

√
2λ

‖ai‖

)2

1{
|x|≤

√
2λ
‖ai‖

}

Properties of GCEL0(x)

I Limit inf of the functions satisfying (P1) and (P2)
I Convex hull if A diagonal or orthogonal (ATA diagonal)
I Continuity
I Non convex in the general case (for any A )
I but convexity with respect to each component

31 / 47



4. `2-`0 optimization by continuous relaxation

Nonsmooth nonconvex algorithms
The continuity of GCEL0 allows to use recent nonsmooth nonconvex algorithms to
minimize (indirectly) G`0 ,

I Difference of Convex (DC) functions programming [Gasso et al 09]
I Majorization-Minimization(MM) algorithms (e.g. Iteratively Reweighted `1

(IRL1) [Ochs et al 2015])
I Forward-Backward splitting (GIST [Gong et al 13], [Attouch et al 13])
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4. `2-`0 optimization by continuous relaxation

Forward-Backward Splitting Algorithm

xk+1 ∈ proxγΦCEL0(·)

(
xk − γkAT (Axk − d)

)
,

where 0 < γ < 1
‖A‖2 and

proxγφCEL0(a,λ;·)(u) =

 sign(u) min
(
|u|, (|u| −

√
2λγa)+/(1− a2γ)

)
if a2γ < 1

u1{|u|>√2γλ} + {0, u}1{|u|=√2γλ} if a2γ ≥ 1
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5

 

 

L0

L1

MCP

Figure: Proximal operators. Red: `0, Blue: `1, Green: ΦCEL0 (depends on a = ‖ai‖
at component u = xi).
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4. `2-`0 optimization by continuous relaxation

Forward-Backward Splitting Algorithm

xk+1 ∈ proxγΦCEL0(·)

(
xk − γkAT (Axk − d)

)
,

where 0 < γ < 1
‖A‖2 and

proxγφCEL0(a,λ;·)(u) =

 sign(u) min
(
|u|, (|u| −

√
2λγa)+/(1− a2γ)

)
if a2γ < 1

u1{|u|>√2γλ} + {0, u}1{|u|=√2γλ} if a2γ ≥ 1

I Convergence to a critical point under Kurdyka-Lojaseiwicz (KL) property
[Attouch et al 13].

I Accelerated algorithm in the non convex case [Li Lin 15]
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5. Exact reformulation

Exact reformulation

I Class of continuous nonconvex penalties → asymptotic connections with the
`2-`0 criteria [Chouzenoux et al 13]

I Reformulation using Difference of Convex functions → asymptotic or local
minimizer results [Le Thi et al 14, Le Thi et al 15]

I Equivalence of `0- and `p-norm (0 < p ≤ 1) minimization under linear
equalities or inequalities (e.g. exact reconstruction
problem) [Fung and Mangasarian 11]

I Reformulation and optimization through Mixed-Integer Programs (MIPs) →
global optimum for problems of reasonable size (a few hundred
variables) [Bourguignon et al 15]

I Exact reformulation ([Bi et al 14, Yuan & Ghanem 16, Liu et al 18], ,...)
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5. Exact reformulation of `0: Penalized reformulation

Lemma 1 [Liu et al 18, Yuan & Ghanem 16]

‖x‖0 = min
−1≤u≤1

‖u‖1 s.t ‖x‖1 =< u, x >

Exact reformulation for the `2 − `0 penalized problem
Initial problem:

min
x

1

2
‖Ax− d‖22 + λ‖x‖0

Penalized reformulation:

min
x,u

Gρ(x,u) :=
1

2
‖Ax− d‖2 + ι{−1≤·≤1}(u) + λ‖u‖1 + ρ(‖x‖1− < x, u >)

with ι{x∈D}(x) = 0 if x ∈ D, +∞ otherwise.

Theorem [Bechensteen,et al.]

If ρ > σmax(A)‖d‖2, and A is of full rank. Then:
1. If (xρ, uρ) is a local (respectively global) minimizer of Gρ, then xρ is a local

(respectively global) minimizer of the initial problem.

2. If x̂ is a global minimizer of the initial problem, then (x̂, û) is a global
minimizer of Gρ with û associated with Lemma 1.
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5. Exact reformulation of `0: Constrained reformulation

Lemma 1 [Liu et al 18, Yuan & Ghanem 16]

‖x‖0 = min
−1≤u≤1

‖u‖1 s.t ‖x‖1 =< u, x >

Exact reformulation for the `2 − `0 constrained problem
Initial problem:

min
x

1

2
‖Ax− d‖22 + ι{‖·‖0≤K}(x)

Constrained reformulation:

min
x,u

Gρ(x, u) :=
1

2
‖Ax−d‖2+ι{·≥0}(x)+ι{−1≤·≤1}(u) + ι{‖·‖1≤K}(u)+ρ(‖x‖1− < x,u >)

Theorem [Bechensteen,et al.]

If ρ > σmax(A)‖d‖2, and A is of full rank. Then:
1. If (xρ, uρ) is a local (respectively global) minimizer of Gρ, then xρ is a local

(respectively global) minimizer of the initial problem.

2. If x̂ is a global minimizer of the initial problem, then (x̂, û) is a global
minimizer of Gρ with û associated with Lemma 1.
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5. Exact reformulation of `0

Why minimize the constrained or penalized reformulation instead of their
initial formulation?
Constrained reformulation:

min
x,u

1

2
‖Ax− d‖2 + ι{·≥0}(x) + ι{−1≤·≤1}(u) + ι{‖·‖1≤K}(u) + ρ(‖x‖1− < x, u >)

Penalized reformulation:

min
x,u

1

2
‖Ax− d‖2 + ι{·≥0}(x) + ι{−1≤·≤1}(u) + λ‖u‖1 + ρ(‖x‖1− < x, u >)

I Biconvex
I Non-convexity linked to the coupling term < x,u >

I Minimizing the reformulation is equivalent to minimize the initial problem
regarding local and global minimizers
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5. Exact reformulation of `0: Algorithm

We add a positivity constraint on x and we finally define

Gρ(x,u) =
1

2
‖Ax− d‖2 + ι{·≥0}(x) + ρ‖x‖1+ι{‖·‖1≤K}(u) + ι{−1≤·≤1}(u)−ρ < x, u >

The global optimization scheme is (continuation method)

Initialize: ρ0 > 0, n = 0

Repeat: Solve the problem Gρn :{
xn+1, un+1

}
= arg min

x,u
Gρn (x, u)

Update: ρn+1 = αρn , α > 1

Until: ρn+1 > σmax(A)‖d‖2
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5. Exact reformulation of `0: Algorithm

Gρn (x, u) =
1

2
‖Ax− d‖2 + ι{·≥0}(x) + ρn‖x‖1+ι{‖·‖1≤K}(u) + ι{−1≤·≤1}(u)−ρn < x,u >

At fixed ρn we apply the Proximal Alternate Minimization (PAM) algorithm
[Attouch & al 10]

Initialize: u0 = 0 ∈ RM

Repeat: arg min Gρn using alternate minimizations

I {xn+1} = arg min
x

Gρn (x, un) + 1
2cn
‖x− xn‖2

→ FISTA Algorithm [Beck et al 09]

I {un+1} = arg min
u

Gρn (xn+1, u) + 1
2dn
‖u− un‖2

→ Algorithm [Stefanov, 2004]
Until: convergence

Convergence of the algorithm towards a critical point of Gρn for cn and dn such
that 0 < r− < cn, dn < r+ and under KL condition on Gρn and assuming that xn
and un are bounded [Attouch & al 10].
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6. Results: Single-Molecule Localization Microscopy

x̂ ∈ arg min
x

1

2
‖Ax− d‖22 + ι{·≥0}(x) +R(x)
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6. Results, ISBI challenge 2013, simulated dataset

Figure: Simulated images (among the 361 simulated high density images for this
sample). Data from IEEE ISBI Challenge 2013.
http://bigwww.epfl.ch/smlm/datasets/index.html

8 simulated tubes of 30nm diameter
Camera of 64×64 pixels of size 100nm.
Gaussian PSF, FWHM = 258.21 nm (full width at half maximum)
80932 molecules activated on 361 frames.
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6. Results, ISBI challenge 2013, simulated dataset

Figure: Reconstruction from simulated data set, reduction ratio L = 4.
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6. Results, ISBI challenge 2013, simulated dataset

Jaccard index calculus

∆ ∆∆

Simulated molecules

Corectly detected (DC)

False Alarms (FA)

Non Detection (ND)

∆ tolerance radius

Jaccard index =
DC

DC + FA + ND

Jaccard index results

Jaccard index (%)

Method - Tolerance (nm) 50 100 150 200

IHT 20.1 35.9 40.4 41.3

CEL0 29.3 41.3 42.4 42.6

Constrained reformulation 25.2 40.0 43.2 43.9

Penalized reformulation 25.0 39.3 42.2 42.8

Deep-STORM × × × ×

Table: The jaccard index obtained and the tolerance
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6. Results, ISBI challenge 2013, Real dataset

Figure: Real images (among the 500 real high density images for this sample).
Data from IEEE ISBI Challenge 2013.
http://bigwww.epfl.ch/smlm/datasets/index.html

Camera of 128×128 pixels of size 100nm.
Gaussian PSF, FWHM = 358.1 nm (full width at half maximum)
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6. Results, ISBI challenge 2013, Real dataset

Figure: Reconstruction from the real data set, reduction ratio L = 4.
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7. Concluding remarks

Synthesis

I IHT: simple, but bad local minimizer.
I Greedy: advanced versions can be efficient but complexity increased
I Continuous relaxation:

I Penalized problem
I Continuous Exact `0: preserve global minimizers, can remove local ones,

non convex optimization,
I Exact reformulation:

I Penalized and constrained problems
I Double size problem: biconvex optimization, can be applied with any

data term (not only least square).

Still active research topic

I Exact continuous relaxation for the constraint problem,
I More studies on non-quadratic data fidelity terms,
I Efficient algorithms are still needed for non convex continuous optimization,
I Gridless method [Catala, Duval, Peyre 2019].

45 / 47



Thanks to

I Gilles Aubert, Professor of Mathematics, emeritus, UCA, Nice France.
I Emmanuel Soubies, young researcher at CNRS, IRIT Toulouse, France.
I Arne Bechensteen, PhD student, Morpheme, I3S-INRIA SAM, Sophia

Antipolis France.
I Eric Debreuve, researcher at CNRS, Morpheme, I3S-INRIA SAM, Sophia

Antipolis France.
I Simon Bahadoran, past intern, Morpheme, I3S-INRIA SAM, Sophia

Antipolis France.

46 / 47



47 / 47



References I

Arne Bechensteen, Laure Blanc-Féraud and Gilles Aubert, Reformulation of l2-l0 constrained

criterion for SMLM, preprint, 2018.

Hedy Attouch, Jérôme Bolte, Patrick Redont and Antoine Soubeyran, Proximal alternating

minimization and projection methods for nonconvex problems. An approach based on the
Kurdyka-Lojasiewicz inequality, Mathematics of operation research, 35(2), (2010), pp. 438–457.

Hedy Attouch, Jérôme Bolte, and Benar Fux Svaiter, Convergence of descent methods for

semi-algebraic and tame problems: proximal algorithms, forward–backward splitting, and
regularized gauss–seidel methods, Mathematical Programming, 137 (2013), pp. 91–129.

Amir Beck and Marc Teboulle, A fast iterative shrinkage-thresholding algorithm for linear

inverse problems, SIAM Journal on Imaging Sciences, 2 (2009), pp. 183–202.

S. Bi, X. Liu, and S. Pan, Exact penalty decomposition method for zero-norm minimization

based on MPEC formulation, SIAM Journal on Scientific Computing, 36(4) (2014).

Thomas Blumensath and Mike E Davies, Iterative thresholding for sparse approximations,

Journal of Fourier Analysis and Applications, 14 (2008), pp. 629–654.

Sébastien Bourguignon, Jordan Ninin, Hervé Carfantan and Marcel Mongeau, Optimisation

exacte de critères parcimonieux en norme `0 par programmation mixte en nombres entiers,
Colloque GRETSI 2015.

Leo Breiman, Better subset regression using the nonnegative garrote, Technometrics, 37 (1995),
pp. 373–384.

Betzig, Eric and Patterson, George H and Sougrat, Rachid and Lindwasser, O Wolf and
Olenych, Scott and Bonifacino, Juan S and Davidson, Michael W and Lippincott-Schwartz,
Jennifer and Hess, Harald F, Imaging intracellular fluorescent proteins at nanometer
resolution, Science, 5793 (2006), pp. 1642-1645.

48 / 47



References II

Emmanuel J Candès, Justin Romberg, and Terence Tao, Robust uncertainty principles: Exact

signal reconstruction from highly incomplete frequency information, Information Theory, IEEE
Transactions on, 52 (2006), pp. 489–509.

Emmanuel J Candès, Michael B Wakin, and Stephen P Boyd, Enhancing sparsity by reweighted

`1 minimization, Journal of Fourier analysis and applications, 14 (2008), pp. 877–905.

Emmanuel J Candès, and Michael B Wakin, An introduction to compressive sampling, IEEE

Signal Processing Magazine, 25(2), (2008), pp. 21–30.

P. Catala, V. Duval and G. Peyre, A low - rank approach to off - the - grid sparse

deconvolution, NCMIP conf 2017, arXiv 2019.

Rick Chartrand, Exact reconstruction of sparse signals via nonconvex minimization, Signal

Processing Letters, IEEE, 14 (2007), pp. 707–710.

S. Chen, S. Billings and W. Luo, Orhogonal least squares methods and their application to

non-linear system identification, International journal of Control, 50(5) (1989), pp. 1873–1896.

Scott Shaobing Chen, David L Donoho, and Michael A Saunders, Atomic decomposition by Basis

Pursuit, SIAM journal on scientific computing, 20 (1998), pp. 33–61.

Emilie Chouzenoux, Anna Jezierska, Jean-Christophe Pesquet and Hugues Talbot, A

majorize-minimize subspace approach for \ell_2-\ell_0 image regularization, SIAM Journal on
Imaging Sciences, 6 (2013), pp.563–591.

Frank H Clarke, Optimization and nonsmooth analysis, vol. 5, Siam, 1990.

49 / 47



References III

Ingrid Daubechies, Michel Defrise, and Christine De Mol, An iterative thresholding algorithm

for linear inverse problems with a sparsity constraint, Communications on Pure and Applied
Mathematics, 57 (2004), pp. 1413–1457.

Geoff Davis, Stéphane Mallat and Marco Avellaneda Adaptive greedy approximations,

Constructive approximation, 13 (1997), pp. 57–98.

David L Donoho and Micael Elad, Optimally sparse representation in general (nonorthogonal)

dictionaries via `1 minimization, in Proceedings of the National Academy of Sciences 100(5)
(2003), pp. 72–76.

David L Donoho, For most large underdetermined systems of linear equations the minimal

`1-norm solution is also the sparsest solution, Communications on Pure and Applied
Mathematics, 59 (2006), pp. 797–829.

Jianqing Fan and Runze Li, Variable selection via nonconcave penalized likelihood and its oracle

properties, Journal of the American Statistical Association, 96 (2001), pp. 1348–1360.

Simon Foucart and Ming-Jun Lai, Sparsest solutions of underdetermined linear systems via

`q-minimization for 0 < q ≤ 1, Applied and Computational Harmonic Analysis, 26 (2009),
pp. 395–407.

G.M. Fung and O.L. Mangasarian, Equivalence of minimal `0- and `p-norm solutions of linear

equalities, inequalities and linear programs for sufficiently small p, Journal of optimization
theory and applications, 151 (2011), pp. 1–10.

Gilles Gasso, Alain Rakotomamonjy, and Stéphane Canu, Recovering sparse signals with a

certain family of nonconvex penalties and DC programming, Signal Processing, IEEE
Transactions on, 57 (2009), pp. 4686–4698.

50 / 47



References IV

Pinghua Gong, Changshui Zhang, Zhaosong Lu, Jianhua Huang, and Jieping Ye, A General

Iterative Shrinkage and Thresholding Algorithm for Non-convex Regularized Optimization
Problems, in Proceedings of The 30th International Conference on Machine Learning, 2013,
pp. 37–45.

Remi Gribonval and Morten Nielsen, Sparse representation in unions of bases, IEEE

Transactions on Information Theory, 49(12), (2003), pp. 73–76.

Hess, Samuel T and Girirajan, Thanu PK and Mason, Michael D Ultra-high resolution imaging

by fluorescence photoactivation localization microscopy Biophysical journal, 11 (2006), Elsevier,
pp. 4258-4272.

Cédric Herzet and Angélique Drémeau, Bayesian Pursuit Algorithms , in Proceedings of

European Signal Processing conference (EUSIPCO), Aalborg, Danemark, August 2010.

Seamus J Holden, Stephan Uphoff and Achillefs N Kapanidis DAOSTORM: an algorithm for

high-density super-resolution microscopy Nature Methods, 8 (2011), pp. 279–280.

P. Jain, A. Tewari and I.S.Dhillon Orthogonal Matching Pursuit with Replacement Advanced

in Neural Information Processing Systems, 24 (2011), pp. 1215–1223.

Hoai An Le Thi, Hoai Minh Le and Tao Pham Dinh, Feature selection in machine learning: an

exact penalty approach using a Difference of Convex function Algorithm, Machine Learning,
2014, pp. 1–24.

Hoai An Le Thi, Tao Pham Dinh, Hoai Minh Le and Xuan Thanh Vo, DC approximation

approaches for sparse optimization, European Journal of Operational Research, 244 (2015),
pp. 26–46.

51 / 47



References V

Huan Li and Zhouchen Lin, Accelerated Proximal Gradient Methods for Nonconvex

Programming, Part of: Advances in Neural Information Processing Systems 28 (NIPS 2015), pp.
679?704.

Yulan Liu, Shujun. Bi, and Shoahua Pan, Equivalent Lipschitz surrogates for zero-norm and

rank optimization problems., Journal of Global Optimization, 72 (4), (2018), pp. 679?704.

Stéphane G Mallat and Zhifeng Zhang, Matching pursuits with time-frequency dictionaries,

Signal Processing, IEEE Transactions on, 41 (1993), pp. 3397–3415.

OL Mangasarian Machine learning via polyhedral concave minimization Applied Mathematics

and Parallel Computing (1996), pp. 175–188.

Min, J. and Vonesch, C. and Kirshner, H. and Carlini, L. and Olivier, N. and Holden, S. and
Unser, M. FALCON: fast and unbiased reconstruction of high-density super-resolution
microscopy data. Scientific Reports, 4 (2014), pp. 4577.

Hosein Mohimani, Massoud Babaie-Zadeh and Christian Jutten, A fast approach for overcomplete

sparse decomposition based on smoothed `0 norm, Signal Processing, IEEE Transactions on, 57
(2008), pp. 289–301.

Balas Kausik Natarajan Sparse approximate solutions to linear systems, SIAM journal on

computing, 24 (1995), pp. 227–234.

Mila Nikolova, Description of the minimizers of least squares regularized with `0-norm.

Uniqueness of the global minimizer, SIAM Journal on Imaging Sciences, 6 (2013), pp. 904–937.

Mila Nikolova, Relationship between the optimal solutions of least squares regularized with

L0-norm and constrained by k-sparsity, Appl. Comput. Harmon. Anal., 41(1), (2016),
pp. 237–265.

52 / 47



References VI

P. Ochs, A. Dosovitskiy, T. Brox, and T. Pock, An iteratively reweighted Algorithm for

Non-smooth Non-convex Optimization in Computer Vision, SIAM Journal on Imaging
Sciences, 8(1), 2015.

Yagyensh Chandra Pati, Ramin Rezaiifar, and PS Krishnaprasad, Orthogonal matching pursuit:

Recursive function approximation with applications to wavelet decomposition, in Signals,
Systems and Computers, 1993. 1993 Conference Record of The Twenty-Seventh Asilomar
Conference on, IEEE, 1993, pp. 40–44.

Rust, Michael J and Bates, Mark and Zhuang, Xiaowei Sub-diffraction-limit imaging by

stochastic optical reconstruction microscopy (STORM), Nature methods, 10 (2006),
pp. 793-796.

Daniel Sage, Hagai Kirshner, Thomas Pengo, Nico Stuurman, Junhong Min, Suliana Manley and
Michael Unser, Quantitative evaluation of software packages for single-molecule localization
microscopy, in Nature methods, 2015, pp. 717–724.

Stefan M. Stefanov Convex quadratic minimization subject to a linear constraint and box

constraints Applied Mathematics Research Express, 1 (2004), pp. 17-42.

Emmanuel Soubies, Laure Blanc-Féraud and Gilles Aubert A Continuous Exact l0 Penalty

(CEL0) for Least Squares Regularized Problem, SIAM Journal on Imaging Sciences, 8(3), 2015.

Emmanuel Soubies, Laure Blanc-Féraud and Gilles Aubert A Unified View of Exact Continuous

Penalties for l2-l0 Minimization, SIAM Journal of Optimization, 27(3), 2017.

Charles Soussen, Jérôme Idier, David Brie, and Junbo Duan, From Bernoulli–Gaussian

deconvolution to sparse signal restoration, Signal Processing, IEEE Transactions on, 59 (2011),
pp. 4572–4584.

53 / 47



References VII

Charles Soussen, Jérôme Idier, Junbo Duan and David Brie, Homotopy Based Algorithms for

`0-Regularized Least-Squares, Signal Processing, IEEE Transactions on, 63(13) (2015),
pp. 3301–3316.

R. Tibshirani, Regression shrinkage and selection via the lasso, Journal of the Royal Statistical

Society, 46 (1996), pp. 431–439.

Joel A Tropp, Greed is good: Algorithmic results for sparse approximation, Information

Theory, IEEE Transactions on, 50 (2004), pp. 2231–2242.

Ganzhao Yuan and Bernard Ghanem, Sparsity Constrained Minimization via Mathematical

Programming with Equilibrium Constraints, arXiv:1608.04430 (2016).

Cun-Hui Zhang, Multi-stage convex relaxation for learning with sparse regularization, Advances

in Neural Information Processing Systems, (2009), pp. 1929–1936.

Cun-Hui Zhang, Nearly unbiased variable selection under minimax concave penalty, The Annals

of Statistics, (2010), pp. 894–942.

Hui Zou, The adaptive lasso and its oracle properties, Journal of the American statistical

association, 101 (2006), pp. 1418–1429.

54 / 47


	0.0: 
	0.1: 
	0.2: 
	0.3: 
	0.4: 
	0.5: 
	0.6: 
	0.7: 
	0.8: 
	0.9: 
	0.10: 
	0.11: 
	0.12: 
	0.13: 
	0.14: 
	0.15: 
	0.16: 
	0.17: 
	0.18: 
	0.19: 
	0.20: 
	0.21: 
	0.22: 
	0.23: 
	0.24: 
	0.25: 
	0.26: 
	0.27: 
	0.28: 
	0.29: 
	0.30: 
	0.31: 
	0.32: 
	0.33: 
	0.34: 
	0.35: 
	0.36: 
	0.37: 
	0.38: 
	0.39: 
	0.40: 
	0.41: 
	0.42: 
	0.43: 
	0.44: 
	0.45: 
	0.46: 
	0.47: 
	0.48: 
	0.49: 
	0.50: 
	0.51: 
	0.52: 
	0.53: 
	0.54: 
	0.55: 
	0.56: 
	0.57: 
	0.58: 
	0.59: 
	0.60: 
	0.61: 
	anm0: 
	1.0: 
	1.1: 
	1.2: 
	1.3: 
	1.4: 
	1.5: 
	1.6: 
	1.7: 
	1.8: 
	1.9: 
	1.10: 
	1.11: 
	1.12: 
	1.13: 
	1.14: 
	1.15: 
	1.16: 
	1.17: 
	1.18: 
	1.19: 
	1.20: 
	1.21: 
	1.22: 
	1.23: 
	1.24: 
	1.25: 
	1.26: 
	1.27: 
	1.28: 
	1.29: 
	1.30: 
	1.31: 
	1.32: 
	1.33: 
	1.34: 
	1.35: 
	1.36: 
	1.37: 
	1.38: 
	1.39: 
	1.40: 
	1.41: 
	1.42: 
	1.43: 
	1.44: 
	1.45: 
	1.46: 
	1.47: 
	1.48: 
	1.49: 
	1.50: 
	1.51: 
	1.52: 
	1.53: 
	1.54: 
	1.55: 
	1.56: 
	1.57: 
	1.58: 
	1.59: 
	1.60: 
	1.61: 
	1.62: 
	1.63: 
	1.64: 
	1.65: 
	1.66: 
	anm1: 


