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1.Introduction

Many signal processing areas are concerned with sparse solution recovery:
compressed sensing, variable selection, source separation, learning...

I Linear observation : Ax = d

I d : observed data, vector in RM
I x unknown data to be estimated in RN
I A observation matrix, M ×N matrix.

usually M < N , the system is undertermined, A is ill-conditioned,
observations are noisy

I Least square solution x̂ = arg min
x∈RN

‖Ax− d‖22

I Regularization: sparse signal hypothesis modeled by considering "`0-norm”
constraints:

‖x‖0 ≤ K where ‖x‖0 = # {xi, i = 1, . . . , N : xi 6= 0}

NB: `0-norm is NOT a norm as ‖λx‖0 = ‖x‖0 6= λ‖x‖0.
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1.0 Dictionary representation in image processing
I Image are non-stationary, they exhibit smooth areas, oscillations, edges,

textures,...
I Each part is represented by given waveforms which best match the image

structure, for example Basis Bi as Haar, smooth wavelets, sine/cosine,...
I Construct a redundant dictionary with all these representative waveforms,

possibly by a succession of bases
I An image d will be represented in this over-complete dictionary, if we find

arg min
x∈RN

‖Ax− d‖22 + λ‖x‖0

or
arg min

x∈RN
‖Ax− d‖22 subject to ‖x‖0 ≤ K
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1.1 Examples in Signal/image Processing

I signal is a sum of pulses, spikes, modeled by a sum of Dirac
∑K
r=1 xrδtr .

I acquisition system, channel, is modeled as a linear system, e.g. convolution
by a Gaussian function: d(.) = h ∗

∑K
r=1 xrδtr =

∑K
r=1 xrh(.− tr).

By assuming the Dirac locations tr are on a regular grid indexed by i = 1, ...N

I 1D example: Channel estimation in communications -
I 2D example: Single Molecule Localization in super-resolution microscopy -
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2D example in Super-resolution microscopy: SMLM
(Single Molecule Localization Microscopy)

Fluorescence microscopy

I Genes of fluorescent molecules are combined with genes
of proteins of structure we want to study
Nobel Prize of chemistry 2008

I Illumination by a laser causes the fluorophores to emit
photons

I structure of interest can be imaged through the
microscope

It allows

I living cell imaging
I 3D imagery
I Resolution 200 nm in lateral direction, around 400 axial direction (depth)

Approximate sizes : cell 10 -100 µm, nucleus 4 -7 µm, proteins 10 -100 µm,
molecules few nm.
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2D example in Super-resolution microscopy: SMLM (continued)

Conventional fluorescence microscopy limits

I physical diffraction limit of optical systems
I Airy patch = impulse response of the microscope (PSF:

Point Spread Function)
I overlapping patches limit at ≈200nm the distance

between two molecules to be resolved (Rayleigh limit)

Super-resolution by single molecule localization

I Photo-activable molecules: PALM Photo Activated Localisation
Microscopy ([Betzig & al 06, Hess & al, 2006]) et STORM STochastic Optical
Reconstruction Microscopy ([Rust & al, 2006])

I Sequentially activate and image a small random set of fluorescent molecules.
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2D example in Super-resolution microscopy: SMLM (continued)
I activation
I imaging
I localization
I assembling

Figure: PALM microscopy principle. From Zeiss tutorials
[http://zeiss-campus.magnet.fsu.edu/tutorials/index.html]
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2D example in Super-resolution microscopy: SMLM (continued)

Limitations: number of acquisition needed to obtain the super-resolved
image

I cost time and memory
I temporal resolution restricted (motion)

→ Increase molecule density
I Localization more difficult due to more overlapping

Localization algorithms

I Challenge ISBI 2013 [Sage et al 15]

I PSF fitting, and derived methods for high density molecule
localization (e.g. DAOSTORM, [Holden & al 11]).

I Deconvolution and reconstruction on a finer grid (e.g. FALCON,
[Min & al, 2014])
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2D example in Super-resolution microscopy: SMLM (continued)

Image formation model PALM / STORM

d ∈ RM×M one acquisition.
X ∈ RML×ML an image where each pixel of d is
divided in L×L pixels.

L=4

X

∗
H(·)

PSF H(X)

ML(·)

ML(H(X))

+η

d
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2D example in Super-resolution microscopy: SMLM (continued)

Image formation model PALM / STORM
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Problem `2 − `0

X̂ ∈ arg min
X

1

2
‖d−ML(H(X))‖22 + λ‖X‖0
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1.3 `2-`0 optimization problems

Exact Recovery problem

x̂ = arg min
x∈RN

‖x‖0 subject to Ax = d

Approximation problem: two constrained forms

x̂ = arg min
x∈RN

‖Ax− d‖22 subject to ‖x‖0 ≤ K

x̂ = arg min
x∈RN

‖x‖0 subject to ‖Ax− d‖22 ≤ ε

Approximation problem : penalized form

x̂ = arg min
x∈RN

G`0 (x) :=
1

2
‖Ax− d‖22 + λ‖x‖0

A ∈ RM×N with M � N

I Non equivalent formulations
I Existence of an optimal solution and relationships between optimal solutions

in [Nikolova 16]
I Intensive work in signal and image processing, and in statistics.
I non-continuous, non-convex and NP-hard optimization problem.

[Natarajan 95] [Davis & al 97]. Rouhgly speaking, a solution cannot be verified
in polynomial time w.r.t the dimension of the problem
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2. IHT Algorithm

Penalized form

x̂ = arg min
x∈RN

1

2
‖Ax− d‖22 + λ‖x‖0

I 1
2
‖Ax− d‖22 is L-gradient Lipschitz (L = ‖A‖2)

I Proximal of ‖.‖0 has explicit expression, this is the Hard Threshold

Iterative Hard Thresholding

(IHT): Forward-Backward Splitting (FBS) algorithm

xk+1 = proxγλ‖.‖0

(
xk − γAt

(
Axk − d

))
γ < 1

L
is the gradient step.

Computation of proxγλ‖.‖0 :

proxγλ‖.‖0 (y) = arg min
x∈RN

{
1

2
‖x− y‖2 + γλ‖x|‖0

}
1

2
(x− y)2 + γλ‖x|‖0 =

N∑
i=1

(xi − yi)2 + γλ|xi|0

where |u|0 = 1 if u 6= 0, 0 elsewhere.
Then it is sufficient to compute in 1D arg min

u∈R

{
g(u) := 1

2
(u− y)2 + γλ|u|0

}
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2.2 IHT Algorithm (continued)

Computation of arg min
u∈R

{
g(u) := 1

2
(u− y)2 + γλ|u|0

}

I if u = 0 then
g(0) = 1

2
(y)2

I The minimum could be reached at
û = 0, the value is g(û) = 1

2
(y)2

I if u 6= 0 then g(u) = 1
2

(u− y)2 +λ

I The minimum is reached at û = y
and the value is g(û) = λ

if |y| ≤
√

2λ then û = 0 if |y| ≥
√

2λ then û = y
The solution is given by the Hard Threshold function

û =

{
y if |y| >

√
2λ ,

0 if |y| ≤
√

2λ .

14 / 47



2. IHT Algorithm (continued)

Find the solution of the optimal problem

x̂ = arg min
x∈RN

1

2
‖Ax− d‖22 + λ‖x‖0

by Forward Backward Splitting algorithm (Iterative Hard Thresholding)

xk+1 = proxγλ‖.‖0

(
xk − γAt

(
Axk − d

))
I IHT algorithm converges to a critical point

[Blumensath and Davies 08, Attouch et al 13].
I Initialization point is important, for example initialize with the solution

with the `1-norm problem: arg min
x∈RN

{
1
2
‖Ax− y‖2 + γλ‖x|‖1

}
. It is not

guaranty that this solution is sparse.
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3. Greedy algorithms
Greedy algorithms, Matching Pursuit (MP) [Mallat et al 93], Orthogonal MP
[Pati et al 93], Orthogonal Least Squares (OLS) [Chen et al 89], Bayesian OMP
[Herzet et al 10], Single Best Replacement [Soussen et al 11] and further variants.

Matching Pursuit:
d is the signal we want to represent with the a limited number K << N of
waveforms or atoms of dictionary A, one atom is one column of A, i.e. A.,i = ai,
i = 1, ..N .

For that we have to solve

x̂ = arg min
x∈RN

‖Ax− d‖22 subject to ‖x‖0 ≤ K.

( or x̂ = arg min
x∈RN

‖x‖0 subject to ‖Ax− d‖22 ≤ ε)

Matching Pursuit algorithm add one component at a time.
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3. Greedy algorithms (continued)

Matching Pursuit principle
It is assumed without loss of generality that A has unit norm columns,
‖A.,i‖ = ‖ai‖ = 1.

The first component i1 ∈ {1, ..., N} will be such that the correlation between
d and atom i is maximum: i1 = arg max

j∈{1,..,N}
|〈aj , d〉|.

Then the optimal solution is x1 = (0, 0, .., 〈ai1 , d〉, 0, .., 0), where the non null
component is at index i1, which is written as x1 = 〈ai1 , d〉.ei1 ,
ei ∈ RN , i ∈ {1, .., N} is the canonical basis in RN .

The criterion is ‖A.x1 − d‖2 = ‖d‖2 − (〈ai1 , d〉)2.

The residual is r = d−A.x1 = d− 〈ai1 , d〉ai1 , and the process is repeated.
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3. Greedy algorithms (continued)

Matching Pursuit Algorithm
Input: A (with unit norm column), d, K.

Initialize: r0 = d, σ0 = ∅, (x0 = 0).

Repeat, while #σk ≤ K: (or while ‖rk‖ > ε)

ik = arg max
j∈{1,..,N}

|〈rk, aj〉|

σk+1 = σk ∪ {ik}
rk+1 = rk − 〈rk, aik 〉.aik

(1)

σk is the support of the current solution xk, that is the indexes of the non-zero
components. #σk is the cardinal of σk. The initial value of #σ0 is 0 and it
increases by 1 at each iteration.
The optimal solution at current iteration is xk+1 = xk + 〈rk, aik 〉.eik .

I The residual ‖rk‖ converges exponentially to 0 [Mallat et al 93].
I Sub-optimal solution: retro-project the residual onto Span{(ai)i∈σK } reduce

the approximation error (‖A.xK − d‖2).
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3. Greedy algorithms (continued)
Orthogonal Matching Pursuit [Pati et al 93, Tropp 04]: at each iteration, optimally
estimate the intensities with the current support of the solution fixed, by
xk+1 = arg min

{x/σx⊂σk+1}
‖Ax− d‖2.

Orthogonal Matching Pursuit (OMP) Algorithm Input: A (with unit

norm column), d, K.

Initialize: r0 = d, σ0 = ∅

Repeat, while #σk ≤ K:

ik = arg max
j /∈σk

|〈rk, aj〉|

σk+1 = σk ∪ {ik}
xk+1 = arg min

{x/σx⊂σk+1}
‖Ax− d‖2

rk+1 = d−Axk+1

I Convergence in N iterations at most (at each iteration a new component is
selected),

I Exact sparse recovery results (under conditions on A) [Tropp 04].
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3. Greedy algorithms (continued)

Further algorithms:
At each iteration, several strategies for one component to be

I added,
I removed,
I replaced.

Orthogonal Least Squares (OLS) [Chen et al 89], Bayesian OMP [Herzet et al 10],
Single Best Replacement [Soussen et al 11] and further variants
[Jain & al 11, Soussen et al 15]...

The more complex is the strategy, the best is the solution and the longest is the
computing time.
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4. `2-`0 optimization by continuous relaxation

Continuous separable relaxation (convex and non-convex)
1
2
‖Ax− d‖22 + λ‖x‖0 → 1

2
‖Ax− d‖22 + λ

∑
i∈IN φ(xi)

Continuous approximation of the `0-norm function:
I `1-norm: Lasso [Tibshirani 96] ; Basic Pursuit [Chen et al 98] ; Compressed

Sensing [Donoho et al 06, Candès et al 06])
I Adaptive Lasso [Zou 06] ;
I Nonnegative Garrote [Breiman 95] ;
I Exponential approximation [Mangasarian 96] ;
I Log-Sum Penalty [Candès et al 08] ;
I Smoothly Clipped Absolute Deviation (SCAD) [Fan and Li 01] ;
I Minimax Concave Penalty (MCP) [Zhang 10] ;
I `p-norms 0 < p < 1 [Chartrand 07, Foucart and Lai 09] ;
I Smoothed `0-norm Penalty (SL0) [Mohimani et al 09] ;

Are they good approximations?
Which one to use?
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4.0 `1 convex relaxation: a specific case
Replacing `0-norm with `1-norm gives convex problems. Non differentiability in 0
of the `1 norm enforces sparsity.

Basis Pursuit (BP) [Chen et al 98]

arg min
x∈RN

‖x‖1 subject to Ax = d

I Compresssed Sensing reconstruction problems [Donoho et al 06, Candès et al 06]
I Results of exact recovery of a sparse solution using `1 minimization rather

than `0 minimization have been shown, under quite restrictive conditions on
matrix A (Restrictive Isometry Property RIP, incoherence...)
[Donoho Elad 03, Gribonval Nielsen 03, Candès Wakin 08]

Basis Pursuit De-Noising (BPDN) [Chen et al 98], LASSO [Tibshirani 96]

Noisy version
arg min

x∈RN
‖x‖1 subject to ‖Ax− d‖22 ≤ ε

or
arg min

x∈RN

1

2
‖Ax− d‖22 + λ‖x‖1

I Sparse signal recovery under conditions on A [Candès et al 06, Candès Wakin 08].

LASSO = Least Absolute Shrinkage and Selection Operator
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2. `2-`0 optimization by continuous relaxation

G`0 (x) := 1
2
‖Ax− d‖22 + λ‖x‖0 → G̃(x) := 1

2
‖Ax− d‖22 +

∑N
i=1 φ(xi)

Definition of a good continuous approximation

I G`0 (x) and G̃(x) have same global minimizers

arg min
x∈RN

G̃(x) = arg min
x∈RN

G`0 (x) (P1)

I G̃(x) has less local minimizers than G`0 (x)

x̂ minimiseur de G̃ =⇒ x̂ minimiseur de G`0 (P2)

Question:

Can we derive necessary and suffisant conditions on φ(.) such that G̃(x) is a good
approximation of G`0 , with no conditions on A and ∀d ∈ RM ?
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4. `2-`0 optimization by continuous relaxation

Notations

I G`0 (x) := 1
2
‖Ax− d‖22 + λ‖x‖0

I G̃(x) := 1
2
‖Ax− d‖22 +

∑N
i=1 φ(xi)

I (P1) arg min
x∈RN

G̃(x) = arg min
x∈RN

G`0 (x)

I (P2) x̂ minimizer of G̃ =⇒ x̂ minimizer of G`0

I B : a finite subset of points of R on which φ is not differentiable.
I ‖ai‖ column i of matrix A (‖ai‖ 6= 0).

Additional assumptions

I min
x∈R

G`0 (x) = min
x∈R

G̃(x),

I φ is locally Lipschitz on R,
I φ is twice differentiable on R \B,
I φ is not differentiable on B.
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4. `2-`0 optimization by continuous relaxation

Theorem (NS conditions for (P1))

G̃ has property (P1) ∀d ∈ R iff φ verifies:
I φ(0) = 0,

I ∀x ∈ R \
(
−
√

2λ
‖ai‖

,
√

2λ
‖ai‖

)
,

φ(x) = λ|x|0 = λ,

I ∀x ∈
(
−
√

2λ
‖ai‖

,
√

2λ
‖ai‖

)
\ {0},

φ(x) > φCEL0(‖ai‖, λ;x)
x

φ(x)

1{x∈D} = 1 if x ∈ D ; 0 otherwise.
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G̃ has property (P1) ∀d ∈ R iff φ verifies:
I φ(0) = 0,

I ∀x ∈ R \
(
−
√

2λ
‖ai‖

,
√

2λ
‖ai‖

)
,

φ(x) = λ|x|0 = λ,

I ∀x ∈
(
−
√

2λ
‖ai‖

,
√

2λ
‖ai‖

)
\ {0},

φ(x) > φCEL0(‖ai‖, λ;x)
x

φ(x)

−
√

2λ
‖ai‖

√
2λ
‖ai‖

φCEL0

φCEL0(‖ai‖, λ, x) = λ−
‖ai‖2

2

(
|x| −

√
2λ

‖ai‖

)2

1{
|x|≤

√
2λ
‖ai‖

}
1{x∈D} = 1 if x ∈ D ; 0 otherwise.
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4. `2-`0 optimization by continuous relaxation

Theorem (NS conditions for
(P1)-(P2))

g̃ has property (P1) and (P2) ∀d ∈ R iff
in addition to the previous conditions, φ
verifies:

I ∀x ∈ B \ {0}, lim
v→x
v<x

φ′(v) > lim
v→x
v>x

φ′(v)

I ∀x ∈ (β−, β+) \B, φ′′(x) ≤ −‖ai‖2

∃v ∈ V(x), φ′′(v) < −‖ai‖2

for β− ∈
[
−
√

2λ
‖ai‖

, 0
)
and β+ ∈

(
0,
√

2λ
‖ai‖

]
.

x

φ(x)

−
√

2λ
‖ai‖

√
2λ
‖ai‖

φCEL0

φCEL0(‖ai‖, λ, x) = λ−
‖ai‖2

2

(
|x| −

√
2λ

‖ai‖

)2

1{
|x|≤

√
2λ
‖ai‖

}
1{x∈D} = 1 if x ∈ D ; 0 otherwise.
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(
|x| −

√
2λ

‖ai‖

)2

1{
|x|≤

√
2λ
‖ai‖

}
1{x∈D} = 1 if x ∈ D ; 0 otherwise.

Proof is based on characterization of minimizers of G`0 [Nikolova 13] and critical
points of G̃.
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4. `2-`0 optimization by continuous relaxation

With conditions (P1) and (P2), φ depends on ‖ai‖ and λ when applied on xi:

G̃(x) :=
1

2
‖Ax− d‖22 +

∑
i∈IN

φ(‖ai‖, λ, xi)

x

φ(x)

−
√

2λ
‖ai‖

√
2λ
‖ai‖

φCEL0

β− β+
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4. `2-`0 optimization by continuous relaxation
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(a) Capped-`1 [Zhang 09]
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(b) SCAD [Fan and Li 01]
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(c) MCP [Zhang 10]
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(d) Truncated-`p

Figure: Examples of penalties for which (P1) (Top) or (P1) and (P2) (Bottom)
hold for a = 0.5, λ = 1 and d = 1.8.

The function φCEL0 is a Minimax Concave Penalty (MCP) [Zhang 10].
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4. `2-`0 optimization by continuous relaxation

Examples using state of the art penalties

Penalty Def φ(u) P1 P2 Conditions

Cap-`1
[Zhang 09]

λmin {θ|u|, 1}
√

X λθ ≥
√

2λ‖ai‖

SCAD
[Fan and Li 01]


λ̃|u| if |u| ≤ λ̃,
2γλ̃|u|−λ̃2−u2

2(γ−1)
if λ̃ < |u| ≤ γλ̃,

(γ+1)λ̃2

2
if |u| > γλ̃

√
X

(γ+1)λ̃2

2
= λ

2 < γ ≤ 1
‖ai‖

− 1

MCP
[Zhang 10]


λ if |u| >

√
2λγi(√

2λ
γi
|u| − u2

2γi

)
if |u| ≤

√
2λγi

√ √
γi <

1
‖ai‖2

Trunc-`p λmin
{
θi|u|

pi , 1
} √ √

θi ≥
(
‖ai‖

2

pi(1−pi)λ

)pi/2

G̃(x) :=
1

2
‖Ax− d‖22 +

∑
i∈IN

φ(‖ai‖, λ, xi)

φCEL0(‖ai‖, λ, xi) = φMCP(γi, λ, xi) for γi =
1

‖ai‖2
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4. `2-`0 optimization by continuous relaxation

The `2 − `0 and `2− CEL0 functionals :

G`0 (x) :=
1

2
‖Ax− d‖2 + λ‖x‖0

GCEL0(x) =
1

2
‖Ax− d‖2 +

∑
i∈IN

φCEL0(‖ai‖, λ, xi)

where φCEL0(‖ai‖, λ, x) = λ−
‖ai‖2

2

(
|x| −

√
2λ

‖ai‖

)2

1{
|x|≤

√
2λ
‖ai‖

}

Properties of GCEL0(x)

I Limit inf of the functions satisfying (P1) and (P2)
I Convex hull if A diagonal or orthogonal (ATA diagonal)
I Continuity
I Non convex in the general case (for any A )
I but convexity with respect to each component

31 / 47



4. `2-`0 optimization by continuous relaxation

Nonsmooth nonconvex algorithms
The continuity of GCEL0 allows to use recent nonsmooth nonconvex algorithms to
minimize (indirectly) G`0 ,

I Difference of Convex (DC) functions programming [Gasso et al 09]
I Majorization-Minimization(MM) algorithms (e.g. Iteratively Reweighted `1

(IRL1) [Ochs et al 2015])
I Forward-Backward splitting (GIST [Gong et al 13], [Attouch et al 13])
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4. `2-`0 optimization by continuous relaxation

Forward-Backward Splitting Algorithm

xk+1 ∈ proxγΦCEL0(·)

(
xk − γkAT (Axk − d)

)
,

where 0 < γ < 1
‖A‖2 and

proxγφCEL0(a,λ;·)(u) =

 sign(u) min
(
|u|, (|u| −

√
2λγa)+/(1− a2γ)

)
if a2γ < 1

u1{|u|>√2γλ} + {0, u}1{|u|=√2γλ} if a2γ ≥ 1
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5

 

 

L0

L1

MCP

Figure: Proximal operators. Red: `0, Blue: `1, Green: ΦCEL0 (depends on a = ‖ai‖
at component u = xi).
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4. `2-`0 optimization by continuous relaxation

Forward-Backward Splitting Algorithm

xk+1 ∈ proxγΦCEL0(·)

(
xk − γkAT (Axk − d)

)
,

where 0 < γ < 1
‖A‖2 and

proxγφCEL0(a,λ;·)(u) =

 sign(u) min
(
|u|, (|u| −

√
2λγa)+/(1− a2γ)

)
if a2γ < 1

u1{|u|>√2γλ} + {0, u}1{|u|=√2γλ} if a2γ ≥ 1

I Convergence to a critical point under Kurdyka-Lojaseiwicz (KL) property
[Attouch et al 13].

I Accelerated algorithm in the non convex case [Li Lin 15]
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5. Exact reformulation

Exact reformulation

I Class of continuous nonconvex penalties → asymptotic connections with the
`2-`0 criteria [Chouzenoux et al 13]

I Reformulation using Difference of Convex functions → asymptotic or local
minimizer results [Le Thi et al 14, Le Thi et al 15]

I Equivalence of `0- and `p-norm (0 < p ≤ 1) minimization under linear
equalities or inequalities (e.g. exact reconstruction
problem) [Fung and Mangasarian 11]

I Reformulation and optimization through Mixed-Integer Programs (MIPs) →
global optimum for problems of reasonable size (a few hundred
variables) [Bourguignon et al 15]

I Exact reformulation ([Bi et al 14, Yuan & Ghanem 16, Liu et al 18], ,...)
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5. Exact reformulation of `0: Penalized reformulation

Lemma 1 [Liu et al 18, Yuan & Ghanem 16]

‖x‖0 = min
−1≤u≤1

‖u‖1 s.t ‖x‖1 =< u, x >

Exact reformulation for the `2 − `0 penalized problem
Initial problem:

min
x

1

2
‖Ax− d‖22 + λ‖x‖0

Penalized reformulation:

min
x,u

Gρ(x,u) :=
1

2
‖Ax− d‖2 + ι{−1≤·≤1}(u) + λ‖u‖1 + ρ(‖x‖1− < x, u >)

with ι{x∈D}(x) = 0 if x ∈ D, +∞ otherwise.

Theorem [Bechensteen,et al.]

If ρ > σmax(A)‖d‖2, and A is of full rank. Then:
1. If (xρ, uρ) is a local (respectively global) minimizer of Gρ, then xρ is a local

(respectively global) minimizer of the initial problem.

2. If x̂ is a global minimizer of the initial problem, then (x̂, û) is a global
minimizer of Gρ with û associated with Lemma 1.
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5. Exact reformulation of `0: Constrained reformulation

Lemma 1 [Liu et al 18, Yuan & Ghanem 16]

‖x‖0 = min
−1≤u≤1

‖u‖1 s.t ‖x‖1 =< u, x >

Exact reformulation for the `2 − `0 constrained problem
Initial problem:

min
x

1

2
‖Ax− d‖22 + ι{‖·‖0≤K}(x)

Constrained reformulation:

min
x,u

Gρ(x, u) :=
1

2
‖Ax−d‖2+ι{·≥0}(x)+ι{−1≤·≤1}(u) + ι{‖·‖1≤K}(u)+ρ(‖x‖1− < x,u >)

Theorem [Bechensteen,et al.]

If ρ > σmax(A)‖d‖2, and A is of full rank. Then:
1. If (xρ, uρ) is a local (respectively global) minimizer of Gρ, then xρ is a local

(respectively global) minimizer of the initial problem.

2. If x̂ is a global minimizer of the initial problem, then (x̂, û) is a global
minimizer of Gρ with û associated with Lemma 1.
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5. Exact reformulation of `0

Why minimize the constrained or penalized reformulation instead of their
initial formulation?
Constrained reformulation:

min
x,u

1

2
‖Ax− d‖2 + ι{·≥0}(x) + ι{−1≤·≤1}(u) + ι{‖·‖1≤K}(u) + ρ(‖x‖1− < x, u >)

Penalized reformulation:

min
x,u

1

2
‖Ax− d‖2 + ι{·≥0}(x) + ι{−1≤·≤1}(u) + λ‖u‖1 + ρ(‖x‖1− < x, u >)

I Biconvex
I Non-convexity linked to the coupling term < x,u >

I Minimizing the reformulation is equivalent to minimize the initial problem
regarding local and global minimizers
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5. Exact reformulation of `0: Algorithm

We add a positivity constraint on x and we finally define

Gρ(x,u) =
1

2
‖Ax− d‖2 + ι{·≥0}(x) + ρ‖x‖1+ι{‖·‖1≤K}(u) + ι{−1≤·≤1}(u)−ρ < x, u >

The global optimization scheme is (continuation method)

Initialize: ρ0 > 0, n = 0

Repeat: Solve the problem Gρn :{
xn+1, un+1

}
= arg min

x,u
Gρn (x, u)

Update: ρn+1 = αρn , α > 1

Until: ρn+1 > σmax(A)‖d‖2
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5. Exact reformulation of `0: Algorithm

Gρn (x, u) =
1

2
‖Ax− d‖2 + ι{·≥0}(x) + ρn‖x‖1+ι{‖·‖1≤K}(u) + ι{−1≤·≤1}(u)−ρn < x,u >

At fixed ρn we apply the Proximal Alternate Minimization (PAM) algorithm
[Attouch & al 10]

Initialize: u0 = 0 ∈ RM

Repeat: arg min Gρn using alternate minimizations

I {xn+1} = arg min
x

Gρn (x, un) + 1
2cn
‖x− xn‖2

→ FISTA Algorithm [Beck et al 09]

I {un+1} = arg min
u

Gρn (xn+1, u) + 1
2dn
‖u− un‖2

→ Algorithm [Stefanov, 2004]
Until: convergence

Convergence of the algorithm towards a critical point of Gρn for cn and dn such
that 0 < r− < cn, dn < r+ and under KL condition on Gρn and assuming that xn
and un are bounded [Attouch & al 10].
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6. Results: Single-Molecule Localization Microscopy

x̂ ∈ arg min
x

1

2
‖Ax− d‖22 + ι{·≥0}(x) +R(x)
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6. Results, ISBI challenge 2013, simulated dataset

Figure: Simulated images (among the 361 simulated high density images for this
sample). Data from IEEE ISBI Challenge 2013.
http://bigwww.epfl.ch/smlm/datasets/index.html

8 simulated tubes of 30nm diameter
Camera of 64×64 pixels of size 100nm.
Gaussian PSF, FWHM = 258.21 nm (full width at half maximum)
80932 molecules activated on 361 frames.
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6. Results, ISBI challenge 2013, simulated dataset

Figure: Reconstruction from simulated data set, reduction ratio L = 4.
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6. Results, ISBI challenge 2013, simulated dataset

Jaccard index calculus

∆ ∆∆

Simulated molecules

Corectly detected (DC)

False Alarms (FA)

Non Detection (ND)

∆ tolerance radius

Jaccard index =
DC

DC + FA + ND

Jaccard index results

Jaccard index (%)

Method - Tolerance (nm) 50 100 150 200

IHT 20.1 35.9 40.4 41.3

CEL0 29.3 41.3 42.4 42.6

Constrained reformulation 25.2 40.0 43.2 43.9

Penalized reformulation 25.0 39.3 42.2 42.8

Deep-STORM × × × ×

Table: The jaccard index obtained and the tolerance
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6. Results, ISBI challenge 2013, Real dataset

Figure: Real images (among the 500 real high density images for this sample).
Data from IEEE ISBI Challenge 2013.
http://bigwww.epfl.ch/smlm/datasets/index.html

Camera of 128×128 pixels of size 100nm.
Gaussian PSF, FWHM = 358.1 nm (full width at half maximum)
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6. Results, ISBI challenge 2013, Real dataset

Figure: Reconstruction from the real data set, reduction ratio L = 4.
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7. Concluding remarks

Synthesis

I IHT: simple, but bad local minimizer.
I Greedy: advanced versions can be efficient but complexity increased
I Continuous relaxation:

I Penalized problem
I Continuous Exact `0: preserve global minimizers, can remove local ones,

non convex optimization,
I Exact reformulation:

I Penalized and constrained problems
I Double size problem: biconvex optimization, can be applied with any

data term (not only least square).

Still active research topic

I Exact continuous relaxation for the constraint problem,
I More studies on non-quadratic data fidelity terms,
I Efficient algorithms are still needed for non convex continuous optimization,
I Gridless method [Catala, Duval, Peyre 2019].
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