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Motivation : high dimensional parametric PDE’s

Partial differential equation P(u, y) = 0 depending on a parameter vector y ∈ Y ⊂ Rd

with d >> 1 or d =∞.

The parameters may be deterministic (control, optimization, inverse problems) or
random distributed according to a probability distribution ρ (uncertainty modeling and
quantification, risk assessment, inverse problems).

Simple example : steady state diffusion equation

−div(a∇u) = f ,

on a physical domain D, with homogeneous Dirichlet boundary conditions u|∂D = 0,
where a = a(y) is parametrized by y .

Affine model : a(y) = a +
∑

j≥1 yjψj , with yj ∈ [−1, 1] uniformly distributed.

Lognormal model : a(y) = exp(
∑

j≥1 yjψj ), with i.i.d. yj ∼ N (0, 1).

Under suitable assumptions on a and (ψj )j≥1 the problem is well posed in the Hilbert
space H1

0 (D) (Lax-Milgram) for a.e. y ∈ Y .
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Non-intrusive methods

Solution map for a general parametric PDE :

y ∈ Y 7→ u(y) ∈ V .

For the diffusion equation V = H1
0 (D).

The solution map is difficult to capture numerically (curse of dimensionality).

Objective : reconstruct the solution map, from “snapshots” : particular instances of
solutions u(y i ) for i = 1, . . . ,m computed by some numerical solver (non-intrusive).

In practice we query y 7→ uh(y) ∈ Vh (finite element space).

Related objectives : numerical approximation of scalar quantities of interest

y 7→ Q(y) = Q(u(y)) ∈ R

or of averaged quantities u = E(u(y)) or Q = E(Q(y)).
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Another motivation : reconstruction of acoustic fields (low dimension)

An acoustic pressure field p(y , t) generated by a source is measured by n microphones
at positions y1, . . . , ym ∈ Y ⊂ R2 or R3, for t ∈ [0,T ].

Fourier analysis in time p(y i , t) 7→ p̂(y i , ω) and focus at a frequency ω of interest.

One wants to reconstruct the function u(y) := p̂(y , ω) on Y , from the observed data
u(y i ), i = 1, . . . , n.
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General features

Reconstruction of unknown function

u : y ∈ Y 7→ u(y) ∈ R (or V or Vh),

from scattered measurements ui = u(y i ) for i = 1, . . . ,m with y i ∈ Y ⊂ Rd .

For notational simplicity we consider scalar valued functions u.

Measurements are costly : one cannot afford to have m >> 1.

Measurements could be noisy : ui = u(y i ) + ηi .

Analogies with statistical learning :

Non-parametric regression framework : from a random sample (y i , ui )i=1,...,m with
unknown joint density, approximate y 7→ u(y).

Here active learning : the y i are chosen by us (deterministically or randomly).

General questions : how should we sample ? how should we reconstruct ?
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Approximability prior

The unknown function u is well approximated from some n-dimensional space Vn

en(u) := min
v∈Vn

‖u − v‖ ≤ ε(n),

where ε(n) is a known bound and where

‖v‖ := ‖v‖L2(Y ,ρ),

with ρ a probability measure on Y .

For certain parametric PDEs, one relevant choice is a sparse polynomial space

Vn = PΛn = span
{
y → yν =

∏
j≥1

y
νj
j : ν = (νj )j≥1 ∈ Λn

}
,

where Λn is an index set such that #(Λn) = n. Suitable choices of Λn obtained by
best n-term truncation of L2(Y , ρ) orthonormal polynomial series provide with rates
ε(n) ∼ n−s that persist when d =∞.

Sample result (Bachmayr-Cohen-DeVore-Migliorati 2015) for the affine and lognormal
models : if

∑
j≥1 κj |ψj | <∞ with (κ−1

j ) ∈ `q , then ε(n) ∼ n−s with s = 1
q

.
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Objectives

Use the samples {u(y i ) : i = 1, . . . ,m} to reconstruct an approximation un ∈ Vn with
certain optimality properties.

Instance optimality : ‖u − un‖ ≤ Cen(u) for any u, for some fixed C .

Rate optimality : if en(u) ≤ C0n−s for all n, then ‖u − un‖ ≤ C1n−s .

Budget optimality : this shoud be achieved with m ∼ n samples (up to log factors).

Progressivity : for a given or adaptively selected sequence of space

V0 ⊂ V1 ⊂ · · · ⊂ Vn · · · ,

these objective should be met at each step with a cumulated sampling budget O(n)
(previous samples should be recycled).
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Approximating the exact projection

The L2(Y , ρ)-projection Pnu of u has the accuracy en(u).

It can be either described as

Pnu = argmin
{ ∫

Y
|u(y) − v(y)|2dρ(y) : v ∈ Vn

}
,

or

Pnu =

n∑
j=1

cjLj , cj :=

∫
Y
u(y)Lj (y)dρ(y),

where (L1, . . . , Ln) is an L2(Y , ρ)-orthonormal basis of Vn.

Its exact computation is out of reach =⇒ replace the integrals by a discrete sum∫
Y
v(y)dρ(y) ≈

1

m

m∑
i=1

w(y i )v(y i ).

where w is a weight function.
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Resulting approximation methods

Least-squares method :

uLS
n := argmin

{ 1

m

m∑
i=1

w(y i )|u(y i ) − v(y i )|2 : v ∈ Vn

}
.

Pseudo-spectral method :

uPS
n :=

n∑
j=1

c̃jLj , c̃j :=
1

m

m∑
i=1

w(y i )u(y i )Lj (y
i ).



Randomized sampling

Draw (y1, . . . , ym) i.i.d. according to a sampling measure dσ.

Use weight w such that
w(y)dσ(y) = dρ(y),

and therefore∫
Y
v(y)dρ(y) =

∫
Y
w(y)v(y)dσ(y) = E

( 1

m

m∑
i=1

w(y i )v(y i )
)
.

The resulting approximations uLS
n and uPS

n should be compared to u in some
probabilistic sense, for instance E(‖u − un‖2).

Unweighted choice : w = 1 and dσ = dρ may lead to suboptimal results.

Optimality can be ensured by an appropriate choice of w and σ.
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Least-squares

The minimization problem is solved by using a given basis L1, . . . , Ln of Vn and
searching

uW =

n∑
j=1

cjLj .

The vector c = (c1, . . . , cn)t is solution to the normal equations

Gc = a,

with G = (Gk,j )k,j=1,...,n and a = (a1, . . . , an)t , where

Gk,j :=
1

m

m∑
i=1

w(y i )Lk (y
i )Lj (y

i ) and ak :=
1

m

m∑
i=1

w(y i )uiLk (y
i ).

The solution always exists and is unique if G is invertible.



Least-squares

The minimization problem is solved by using a given basis L1, . . . , Ln of Vn and
searching

uW =

n∑
j=1

cjLj .

The vector c = (c1, . . . , cn)t is solution to the normal equations

Gc = a,

with G = (Gk,j )k,j=1,...,n and a = (a1, . . . , an)t , where

Gk,j :=
1

m

m∑
i=1

w(y i )Lk (y
i )Lj (y

i ) and ak :=
1

m

m∑
i=1

w(y i )uiLk (y
i ).

The solution always exists and is unique if G is invertible.



Instance optimality

The approximation uLS
n is the orthogonal projection of u onto Vn for the discrete norm

‖v‖2
m :=

1

m

m∑
i=1

w(y i )|v(y i )|2.

Strategy : establish an equivalence with the continuous L2(Y , ρ) norm over Vn.

Let (L1, . . . , Ln) be an L2(Y , ρ)-orthonormal basis of Vn so that the random matrix

G = (Gk,j ) :=
( 1

m

m∑
i=1

w(y i )Lk (y
i )Lj (y

i )
)
,

satisfies E(G) = I. Then

‖G − I‖ ≤
1

2
⇐⇒ 1

2
‖v‖2 ≤ ‖v‖2

m ≤
3

2
‖v‖2, v ∈ Vn,

where ‖X‖ is the spectral norm of a matrix X.

When this holds one has

‖u−uLS
n ‖2 ≤ en(u)

2+‖Pnu−uLS
n ‖2 ≤ en(u)

2+2‖Pnu−uLS
n ‖2

m ≤ en(u)
2+2‖u−Pnu‖2

m,

and E(‖u − Pnu‖2
m) = en(u)2 =⇒ instance optimality.
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The key ingredient to our analysis

Let L1, . . . , Ln be an orthonormal basis of Vn for the L2(Y , ρ) norm. We introduce

kn,w (y) := w(y)
n∑

j=1

|Lj (y)|
2,

and

Kn,w := ‖kn,w‖L∞ = sup
y∈Y

w(y)
n∑

j=1

|Lj (y)|
2.

Both are independent on the choice orthonormal basis : only depends on (Vn, ρ,w).

Since
∫
Y kn,wdσ =

∑n
j=1

∫
Y |Lj |

2dρ = n, one has

Kn,w ≥ n.

In the case w = 1, we obtain the inverse Christoffel function kn(y) :=
∑n

j=1 |Lj (y)|
2,

which is the diagonal of the orthogonal projection kernel onto Vn, and such that

Kn := ‖kn‖L∞ = max
v∈Vn

‖v‖2
L∞

‖v‖2
.
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Deviation of G from I : a concentration bound

Theorem (Cohen-Migliorati 2017, Doostan-Hampton 2015) :

Let 0 < ε < 1 be arbitrary. Under the condition

m ≥ cKn,w ln(2n/ε), c :=
2

3 ln(3/2) − 1
,

one has the deviation bound

Pr
{
‖G − I‖ ≥

1

2

}
≤ ε.

We set uLS
n = 0 when ‖G − I‖ ≥ 1

2
, and obtain the instance optimality bound

E(‖u − uLS
n ‖2) ≤ 3en(u)

2 + ε‖u‖2.

The constant 3 can be replaced by 1 + δ(n) where δ(n)→ 0.

Typical choice : take ε = n−r for r > 0 larger than the decay rate of en(u) if known.

Gives stability condition m>∼ Kn,w ln(n), which imposes at least the regime m>∼ n ln(n),
but can be much more demanding if Kn,w >> n.
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Where does the stability condition comes from

We may write

G =
1

m

m∑
i=1

Xi ,

where Xi are i.i.d. copies of the n × n rank one random matrix

X = w(y)(Lk (y)Lj (y))j,k=1,...,n,

with y distributed according to σ, which has expectation E(X) = I.

Matrix Chernoff bound (Ahlswede-Winter 2000, Tropp 2011) : if ‖X‖ ≤ K a.s., then

Pr
{∥∥∥ 1

m

m∑
i=1

Xi − E(X)
∥∥∥ ≥ δ} ≤ 2n exp

(
−
mc(δ)

K

)
,

where c(δ) := (1 + δ) ln(1 + δ) − δ > 0 (in particular c( 1
2
) := c−1 =

3 ln(3/2)−1
2

).

Here K = supy∈Y w(y)
∑n

j=1 |Lj (y)|
2 = Kn,w .

Therefore m ≥ cKn,w ln(2n/ε) =⇒ Pr{‖G − I‖ ≥ 1
2
} ≤ ε.
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The unweighted case w = 1

The stability regime is described by the condition m>∼ Knln(n), with Kn := ‖kn‖L∞ .

We can estimate the inverse Christoffel function kn(y) =
∑n

j=1 |Lj (y)|
2 in cases of

practical interest.

A simple example : Y = [−1, 1] and Vn = Pn−1 the univariate polynomials.

(i) Distribution ρ = dy

π
√

1−y2
: the Lj are the Chebychev polynomials and Kn = 2n + 1.

Up to log factors, the stability regime is m>∼ n.

(ii) Uniform distribution ρ = dy
2

: the Lj are normalized Legendre polynomials and

Kn =
∑n

j=1(2j − 1) = n2. Up to log factors, the stability regime is m>∼ n2.

These regimes are confirmed numerically.
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Illustration

Regime of stability : probability that κ(G) ≤ 3, white if 1, black if 0.

Left for ρ = dy

π
√

1−y2
, center : for ρ = dy

2
(with m on x axis, n on y axis).

Right : the gaussian case Y = R and ρ = g(y)dy , where g(y) := 1√
2π

e−y2/2, for

which the Lj are the Hermite polynomials.

The unweighted theory cannot handle this case since Kn =∞
A more ad-hoc analysis shows that stability holds if m>∼ exp(cn) and this regime is
observed numerically.
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Other examples

Local bases : Let Vn be the space of piecewise constant functions over a partition Pn

of Y into n cells. An orthonormal basis is given by the functions ρ(T )−1/2χT .

If the partition is uniform with respect to ρ, i.e. ρ(T ) = 1
n

for all T ∈ Pn, then
Kn = n.

Trigonometric system : with ρ the uniform measure on a torus, since Lj is the complex
exponential, one has Kn = n.

Spectral spaces on Riemannian manifolds : let M be a compact Riemannian manifold
without boundary and let Vn be spanned by the n first eigenfunctions Lj of the
Laplace-Beltrami operator. Then under mild assumptions (doubling properties and
Poincaré inequalities), Kn = O(n) (estimation based on analysis of the Heat kernel in
Dirichlet spaces by Kerkyacharian and Petrushev).

Such spaces are therefore well suited for stable least-squares methods. Example :
spherical harmonics. Note that individually the eigenfunctions do not satisfy
‖Lj‖L∞ = O(1).
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Poincaré inequalities), Kn = O(n) (estimation based on analysis of the Heat kernel in
Dirichlet spaces by Kerkyacharian and Petrushev).

Such spaces are therefore well suited for stable least-squares methods. Example :
spherical harmonics. Note that individually the eigenfunctions do not satisfy
‖Lj‖L∞ = O(1).



Application to acoustic sampling

The unknown function u satisfies the Helmholtz equation

∆u + λ2u = 0,

over Y ⊂ R2 with unknown boundary condition, and where the spatial frequency λ is
linked with with the considered temporal frequency ω.

Vekua theory : u belongs to the space Vλ generated by the plane waves

ek (y) = e ik·y , k ∈ R2 such that |k | = λ,

which are particular solutions of ∆v + λ2v = 0 over R2.

Angular discretization : we perform least-squares in the m dimensional space

Vn := Span{y 7→ ek (y) : k := λ(cos(2jπ/n), sin(2jπ/n)), j = 0, . . . , n − 1}.



Application to acoustic sampling

The unknown function u satisfies the Helmholtz equation

∆u + λ2u = 0,

over Y ⊂ R2 with unknown boundary condition, and where the spatial frequency λ is
linked with with the considered temporal frequency ω.

Vekua theory : u belongs to the space Vλ generated by the plane waves

ek (y) = e ik·y , k ∈ R2 such that |k | = λ,

which are particular solutions of ∆v + λ2v = 0 over R2.

λ

Angular discretization : we perform least-squares in the m dimensional space

Vn := Span{y 7→ ek (y) : k := λ(cos(2jπ/n), sin(2jπ/n)), j = 0, . . . , n − 1}.



Application to acoustic sampling

The unknown function u satisfies the Helmholtz equation

∆u + λ2u = 0,

over Y ⊂ R2 with unknown boundary condition, and where the spatial frequency λ is
linked with with the considered temporal frequency ω.

Vekua theory : u belongs to the space Vλ generated by the plane waves

ek (y) = e ik·y , k ∈ R2 such that |k | = λ,

which are particular solutions of ∆v + λ2v = 0 over R2.

λ
��

��

��
��

��

��

��

��

��
��

��

��

Angular discretization : we perform least-squares in the m dimensional space

Vn := Span{y 7→ ek (y) : k := λ(cos(2jπ/n), sin(2jπ/n)), j = 0, . . . , n − 1}.



Hipmair-Perugia-Moiola (2010) :if u belongs to the Sobolev space Hp ,

inf
v∈Vn

‖u − v‖L2 ≤ Cpn
−p‖v‖Hp .

Fast decay of the approximation error with the number n of plane waves when u is a
smooth solution of Helmholtz equation.

Chardon-Cohen-Daudet (2013) : for this space Vn and if Y is a disk, one has

Kn ∼ n2,

if ρ = dy
|Y |

is the uniform measure over Y , and

Kn ∼ n,

if ρ = (1 − α) dy
|Y |

+ α ds
|∂Y |

combination of the uniform measures over Y and over its

boundary ∂Y : distributing part of the microphones along the boundary improves the
trade-off between the number of microphones and the quality of approximation.
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Experimental result

α : proportion of microphones on the boundary
L : number of plane waves (= n = dim(Vn))
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High dimensions : parametric PDE’s

Prototype example : elliptic PDE’s on some domain D ⊂ R2 or R3 with affine
parametrization of the diffusion function by y = (y1, . . . , yd ) ∈ Y = [−1, 1]d

−div(a∇u) = f , a = ā +

d∑
j=1

yjψj ,

with ellipticity assumption 0 < r < a < R for all y ∈ Y , so y 7→ u(y) ∈ V = H1
0 (D).

With Λ ⊂ Nd , approximation by multivariate polynomial space

VΛ :=

∑
ν∈Λ

vνy
ν, vν ∈ V

 = V ⊗ PΛ,

where yν = yν1
1 · · · y

νd
d .

We consider downward closed index sets : ν ∈ Λ and µ ≤ ν ⇒ µ ∈ Λ.

Basis of PΛ : tensorized orthogonal polynomials Lν(y) =
∏d

j=1 Lνj (yj ) for ν ∈ Λ.
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Downward closed multivariate polynomials
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Breaking the curse of dimensionality

Cohen-DeVore-Schwab (2011) + Bachmayr-Migliorati (2017) : approximation results.

Under suitable summability conditions on (|ψj |)j≥1, there exists a sequence of
downward closed sets Λ1 ⊂ Λ2 ⊂ · · · ⊂ Λn . . . , with n := #(Λn) such that

inf
v∈Vn

‖u − v‖L2(Y ,V ,ρ) ≤ Cn−s ,

with Vn := VΛn , where ρ is the uniform measure. The exponent s > 0 is robust with
respect to the dimension d .

Chkifa-Cohen-Migliorati-Nobile-Tempone (2015) : estimate Kn for PΛn .

With dρ = ⊗d ( dx
2
) the uniform measure over Y , one has Kn ≤ n2 for all downward

closed sets Λn such that #(Λn) = n. Up to log factors, the stability regime is m>∼ n2.

With the tensor-product Chebychev measure, improvement Kn ≤ nα with α := ln 3
ln 2

.

The theory and least-square method is not capable of handling lognormal diffusions :

a = exp(b), b =

d∑
i=1

yjψj , yj ∼ N (0, 1) i.i.d.

which corresponds to the tensor product Gaussian measure over Y = Rd .
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Optimal sampling

In the weighted least-square method, we sample according to dσ such that dρ = wdσ.

The stability condition is m>∼ Kn,w ln(n), where Kn,w := supy∈Y w(y)kn(y).

Optimal choice : take

w(y) =
n

kn(y)
⇐⇒ dσ :=

kn

n
dρ =

1

n

( n∑
j=1

|Lj |
2
)
dρ,

Then dσ is a probability measure and we have kn,w = n.

Therefore, up to log factors, the stability regime is m>∼ n independently of ρ.
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)
dρ,

Then dσ is a probability measure and we have kn,w = n.

Therefore, up to log factors, the stability regime is m>∼ n independently of ρ.

Stability regime for univariate polynomials with ρ Chebychev, uniform, and Gaussian
(m on x axis, n on y axis).



Sampling the optimal density

The optimal sampling measure σ now depends on Vn :

dσ = dσn =
kn

n
dρ =

1

n

( n∑
j=1

|Lj |
2
)
dρ.

In the case of parametric PDEs approximated with multivariate polynomials, dρ is a
product measure (easy to sample), but dσn is not.

Sampling strategies :

(i) Monte Carlo Markov Chain (MCMC) : generate by simple recursive rules a sample
such that the the probability distribution asymptotically approaches dσn.

(ii) Conditional sampling : obtains first component by sampling the marginal dσ1(y1),
then the second component by sampling the conditional marginal probability dσy1 (y2)
for this choice of the first component, etc...

(iii) Mixture sampling : draw uniform variable j ∈ {1, . . . , n}, then sample with
probability |Lj |

2dρ.

Strategies (ii) and (iii) are more efficient on our cases of interests where the Lj have
tensor product structure.
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Sampling on general domains

Optimal sampling may become unfeasible when Y ⊂ Rd is a domain with a general
geometry : the L1, . . . , Ln have no simple expression and cannot be computed exactly.

General assumptions : χY is easily computable ⇒ sampling according to the uniform
measure ρ is easy (sample uniformly on a bounding box, reject if y /∈ Y ).

An optimal two-step strategy (Cohen-Dolbeault, 2019) :

1. With M>
∼ Kn ln(n) sample z1, . . . , zM according to the uniform measure, and define

ρ̃ :=
1

M

M∑
i=1

δz i .

Construct an orthonormal basis L̃1, . . . , L̃n of Vn for the L2(X , ρ̃) inner product and
define k̃n =

∑n
j=1 |L̃j |

2.

2. With m>∼ n ln(n) sample y1, . . . , ym according to

d σ̃ =
k̃n

n
d ρ̃,

that is, select z i with probability pi =
k̃n(z

i )
Mn

.
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Pseudo-spectral methods

Optimal sampling measure helps : Wozniakowski-Wasilkowski (2006), Krieg (2017)

We have

‖Pnu − uPS
n ‖2 =

n∑
j=1

|cj − c̃j |
2, c̃j :=

1

m

m∑
i=1

w(y i )L(y i )u(y i ).

Variance analysis

E(|cj − c̃j |
2) =

1

m
Var(w(y)Lj (y)u(y)) ≤

1

m

∫
Y
|w(y)|2|Lj (y)|

2|u(y)|2dσ(y),

and therefore

E(‖un − uPS
n ‖2) ≤

1

m

∫
Y
w(y)

( n∑
j=1

|Lj (y)|
2
)
|u(y)|2dρ(y).

Therefore, when using the optimal sampling measure, one finds that

E(‖Pnu − uPS
n ‖2) ≤

n

m
‖u‖2.



Multilevel strategy

For l = 0, 1, . . . , L set nl := 2l . Assume unl−1 ∈ Vnl−1 has been constructed.

Draw y1, . . . , yml according to the measure σnl with ml = θnl for some θ > 1.

Then define unl ∈ Vnl by

unl = unl−1 +

nl∑
j=1

c̃jLj , c̃j :=
1

ml

ml∑
i=1

w(y i )L(y i )(u(y i ) − unl−1 (y
i )).

One then has

E(‖u − unL‖
2) ≤ ‖u − PnLu‖

2 +
nl

ml
E(‖u − unL−1‖

2) = enL (u)
2 + θ−1E(‖u − unL−1‖

2)

and we obtain by recursion E(‖u − unL‖2) ≤
∑L

l=0 θ
l−Lenl (u)

2 + θ−L−1E(‖u‖2).

Assuming rate en(u) ≤ Cn−s and taking θ > 22s we retrieve rate optimality.

The sampling budget is optimal : m0 + · · · +mL ≤ 2θnL.

Recent work by D. Krieg : instance optimality achievable if en(u) is known.

General defect : dimension nl grows geometrically.
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Adaptivity

Update adaptively the polynomial space Λn−1 → Λn, while increasing the amount of
sample necessary for stability m = m(n) ∼ n ln(n).

ν
2

ν
1

Problem : the optimal measure σ = σn changes as we vary n. How should we recycle
the previous samples ?

For certain simple cases σn ∼ σ∗ as n→∞ (equilibrium measure for univariate
polynomials on [−1, 1]). But no such asymptotic in general cases.
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Example

Sampling densities σn for n = 5, 10, 20.
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Left : Hermite polynomials of degrees 0, . . . ,m − 1 and ρ standard Gaussian.

Right : Haar wavelets selected by random tree refinement and ρ uniform.



Sequencial sampling

Observe that

dσn =
1

n

( n∑
j=1

|Lj |
2
)
dρ =

(
1 −

1

n

)
dσn−1 +

1

n
dνn where dνn = |Ln |

2dρ.

We use this mixture property to generate the sample in an incremental manner.

Assume that the sample Sn−1 = {y1, . . . , ym(n−1)} have been generated by independent
draw according to the distribution dσn−1.

Then we generate a new sample Sn = {y1, . . . , ym(n)} as follows :

For each i = 1, . . . ,m(n), pick Bernoulli variable bi ∈ {0, 1} with probability { 1
n
, 1 − 1

n
}.

If bi = 0, generate y i according to dνn.

If bi = 1, pick xi incrementally inside Sn−1. If Sn−1 has been exhausted generate y i

according to dσn−1.
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Optimality of the sequencial sampling algorithm

Arras-Bachmayr-Cohen (2018) : the total number of sample Cn used at stage n
satisfies E(Cn) ∼ n ln(n) and Cn<∼ n ln(n) with high probability for all values of n. With

high probability, the matrix G satisfies κ(G) ≤ 3 for all values of n.

Example : hermite polynomials and Gaussian measure).
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mean

Left : Condition number κ(G)

Right : Ratio between total sampling cost Cn and m(n) ∼ n log n.

Alternative strategy (Migliorati) : use a deterministic mixture.
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Conclusions

Appropriate sampling yields optimal non-intrusive methods under the regime m ∼ n.

Applicable to any measure ρ and spaces Vn, in any dimension.

Optimality can be preserved in a sequencial framework.

Convergence results are in expectation.

Perspectives

Similar convergence results with high probability ?

Convergence results in the uniform sense ?

Adaptive weighted least-squares strategies for the selection of index sets Λn.

Extend the optimal sampling measure theory to more general sensing systems.

Similar convergence results with deterministic sampling ?
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